3.4.26 \(\int \frac {x^m}{\sqrt {\csc (a+b \log (c x^n))}} \, dx\) [326]

Optimal. Leaf size=129 \[ \frac {2 x^{1+m} \, _2F_1\left (-\frac {1}{2},-\frac {2 i+2 i m+b n}{4 b n};-\frac {2 i+2 i m-3 b n}{4 b n};e^{2 i a} \left (c x^n\right )^{2 i b}\right )}{(2+2 m-i b n) \sqrt {1-e^{2 i a} \left (c x^n\right )^{2 i b}} \sqrt {\csc \left (a+b \log \left (c x^n\right )\right )}} \]

[Out]

2*x^(1+m)*hypergeom([-1/2, 1/4*(-2*I-2*I*m-b*n)/b/n],[1/4*(-2*I-2*I*m+3*b*n)/b/n],exp(2*I*a)*(c*x^n)^(2*I*b))/
(2+2*m-I*b*n)/(1-exp(2*I*a)*(c*x^n)^(2*I*b))^(1/2)/csc(a+b*ln(c*x^n))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.06, antiderivative size = 126, normalized size of antiderivative = 0.98, number of steps used = 3, number of rules used = 3, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.158, Rules used = {4606, 4604, 371} \begin {gather*} \frac {2 x^{m+1} \, _2F_1\left (-\frac {1}{2},\frac {1}{4} \left (-\frac {2 i (m+1)}{b n}-1\right );-\frac {2 i m-3 b n+2 i}{4 b n};e^{2 i a} \left (c x^n\right )^{2 i b}\right )}{(-i b n+2 m+2) \sqrt {1-e^{2 i a} \left (c x^n\right )^{2 i b}} \sqrt {\csc \left (a+b \log \left (c x^n\right )\right )}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^m/Sqrt[Csc[a + b*Log[c*x^n]]],x]

[Out]

(2*x^(1 + m)*Hypergeometric2F1[-1/2, (-1 - ((2*I)*(1 + m))/(b*n))/4, -1/4*(2*I + (2*I)*m - 3*b*n)/(b*n), E^((2
*I)*a)*(c*x^n)^((2*I)*b)])/((2 + 2*m - I*b*n)*Sqrt[1 - E^((2*I)*a)*(c*x^n)^((2*I)*b)]*Sqrt[Csc[a + b*Log[c*x^n
]]])

Rule 371

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^p*((c*x)^(m + 1)/(c*(m + 1)))*Hyperg
eometric2F1[-p, (m + 1)/n, (m + 1)/n + 1, (-b)*(x^n/a)], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rule 4604

Int[Csc[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Dist[Csc[d*(a + b*Log[x])]^p*((1
 - E^(2*I*a*d)*x^(2*I*b*d))^p/x^(I*b*d*p)), Int[(e*x)^m*(x^(I*b*d*p)/(1 - E^(2*I*a*d)*x^(2*I*b*d))^p), x], x]
/; FreeQ[{a, b, d, e, m, p}, x] &&  !IntegerQ[p]

Rule 4606

Int[Csc[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Dist[(e*x)^(m + 1)
/(e*n*(c*x^n)^((m + 1)/n)), Subst[Int[x^((m + 1)/n - 1)*Csc[d*(a + b*Log[x])]^p, x], x, c*x^n], x] /; FreeQ[{a
, b, c, d, e, m, n, p}, x] && (NeQ[c, 1] || NeQ[n, 1])

Rubi steps

\begin {align*} \int \frac {x^m}{\sqrt {\csc \left (a+b \log \left (c x^n\right )\right )}} \, dx &=\frac {\left (x^{1+m} \left (c x^n\right )^{-\frac {1+m}{n}}\right ) \text {Subst}\left (\int \frac {x^{-1+\frac {1+m}{n}}}{\sqrt {\csc (a+b \log (x))}} \, dx,x,c x^n\right )}{n}\\ &=\frac {\left (x^{1+m} \left (c x^n\right )^{\frac {i b}{2}-\frac {1+m}{n}}\right ) \text {Subst}\left (\int x^{-1-\frac {i b}{2}+\frac {1+m}{n}} \sqrt {1-e^{2 i a} x^{2 i b}} \, dx,x,c x^n\right )}{n \sqrt {1-e^{2 i a} \left (c x^n\right )^{2 i b}} \sqrt {\csc \left (a+b \log \left (c x^n\right )\right )}}\\ &=\frac {2 x^{1+m} \, _2F_1\left (-\frac {1}{2},\frac {1}{4} \left (-1-\frac {2 i (1+m)}{b n}\right );-\frac {2 i+2 i m-3 b n}{4 b n};e^{2 i a} \left (c x^n\right )^{2 i b}\right )}{(2+2 m-i b n) \sqrt {1-e^{2 i a} \left (c x^n\right )^{2 i b}} \sqrt {\csc \left (a+b \log \left (c x^n\right )\right )}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Both result and optimal contain complex but leaf count is larger than twice the leaf count of optimal. \(441\) vs. \(2(129)=258\).
time = 7.82, size = 441, normalized size = 3.42 \begin {gather*} -\frac {2 b e^{i a} n x^{1+m} \left (c x^n\right )^{i b} \sqrt {2-2 e^{2 i a} \left (c x^n\right )^{2 i b}} \sqrt {\frac {i e^{i a} \left (c x^n\right )^{i b}}{-1+e^{2 i a} \left (c x^n\right )^{2 i b}}} \left ((2 i+2 i m+b n) x^{2 i b n} \, _2F_1\left (\frac {1}{2},-\frac {2 i+2 i m-3 b n}{4 b n};-\frac {2 i+2 i m-7 b n}{4 b n};e^{2 i a} \left (c x^n\right )^{2 i b}\right )+(-2 i-2 i m+3 b n) \, _2F_1\left (\frac {1}{2},-\frac {2 i+2 i m+b n}{4 b n};-\frac {2 i+2 i m-3 b n}{4 b n};e^{2 i a} \left (c x^n\right )^{2 i b}\right )\right )}{(2+2 m-i b n) (2+2 m+3 i b n) \left ((2 i+2 i m+b n) x^{2 i b n}+e^{2 i a} (-2 i-2 i m+b n) \left (c x^n\right )^{2 i b}\right )}+\frac {2 x^{1+m} \sin \left (a-b n \log (x)+b \log \left (c x^n\right )\right )}{\sqrt {\csc \left (a+b \log \left (c x^n\right )\right )} \left (b n \cos \left (a-b n \log (x)+b \log \left (c x^n\right )\right )+2 (1+m) \sin \left (a-b n \log (x)+b \log \left (c x^n\right )\right )\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^m/Sqrt[Csc[a + b*Log[c*x^n]]],x]

[Out]

(-2*b*E^(I*a)*n*x^(1 + m)*(c*x^n)^(I*b)*Sqrt[2 - 2*E^((2*I)*a)*(c*x^n)^((2*I)*b)]*Sqrt[(I*E^(I*a)*(c*x^n)^(I*b
))/(-1 + E^((2*I)*a)*(c*x^n)^((2*I)*b))]*((2*I + (2*I)*m + b*n)*x^((2*I)*b*n)*Hypergeometric2F1[1/2, -1/4*(2*I
 + (2*I)*m - 3*b*n)/(b*n), -1/4*(2*I + (2*I)*m - 7*b*n)/(b*n), E^((2*I)*a)*(c*x^n)^((2*I)*b)] + (-2*I - (2*I)*
m + 3*b*n)*Hypergeometric2F1[1/2, -1/4*(2*I + (2*I)*m + b*n)/(b*n), -1/4*(2*I + (2*I)*m - 3*b*n)/(b*n), E^((2*
I)*a)*(c*x^n)^((2*I)*b)]))/((2 + 2*m - I*b*n)*(2 + 2*m + (3*I)*b*n)*((2*I + (2*I)*m + b*n)*x^((2*I)*b*n) + E^(
(2*I)*a)*(-2*I - (2*I)*m + b*n)*(c*x^n)^((2*I)*b))) + (2*x^(1 + m)*Sin[a - b*n*Log[x] + b*Log[c*x^n]])/(Sqrt[C
sc[a + b*Log[c*x^n]]]*(b*n*Cos[a - b*n*Log[x] + b*Log[c*x^n]] + 2*(1 + m)*Sin[a - b*n*Log[x] + b*Log[c*x^n]]))

________________________________________________________________________________________

Maple [F]
time = 0.12, size = 0, normalized size = 0.00 \[\int \frac {x^{m}}{\sqrt {\csc \left (a +b \ln \left (c \,x^{n}\right )\right )}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^m/csc(a+b*ln(c*x^n))^(1/2),x)

[Out]

int(x^m/csc(a+b*ln(c*x^n))^(1/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^m/csc(a+b*log(c*x^n))^(1/2),x, algorithm="maxima")

[Out]

integrate(x^m/sqrt(csc(b*log(c*x^n) + a)), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^m/csc(a+b*log(c*x^n))^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (ha
s polynomial part)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{m}}{\sqrt {\csc {\left (a + b \log {\left (c x^{n} \right )} \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**m/csc(a+b*ln(c*x**n))**(1/2),x)

[Out]

Integral(x**m/sqrt(csc(a + b*log(c*x**n))), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^m/csc(a+b*log(c*x^n))^(1/2),x, algorithm="giac")

[Out]

integrate(x^m/sqrt(csc(b*log(c*x^n) + a)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x^m}{\sqrt {\frac {1}{\sin \left (a+b\,\ln \left (c\,x^n\right )\right )}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^m/(1/sin(a + b*log(c*x^n)))^(1/2),x)

[Out]

int(x^m/(1/sin(a + b*log(c*x^n)))^(1/2), x)

________________________________________________________________________________________